140
Q2(3301). Maximize the Total Height of Unique Towers
def maximumTotalSum(self, maximumHeight: List[int]) -> int:
res = []
picked = set()
for n in maximumHeight:
tmp = n
while tmp in picked:
tmp -= 1
if tmp <= 0:
return -1
picked.add(tmp)
res.append(tmp)
return sum(res)
# Time Limit Exceeded
def maximumTotalSum(self, maximumHeight: List[int]) -> int:
maximumHeight.sort(reverse=True)
res = 0
cur = maximumHeight[0]
for h in maximumHeight:
if cur > h:
cur = h
if cur <= 0:
return -1
res += cur
cur -= 1
return res
Q3(3302). Find the Lexicographically Smallest Valid Sequence
前后缀分解 子序列匹配 Z函数 | LeetCode Biweekly Contest 140 - YouTube
Q4(3303). Find the Occurrence of First Almost Equal Substring - LeetCode
141
Q1(3314). Construct the Minimum Bitwise Array I
Q2(3315). Construct the Minimum Bitwise Array II
def minBitwiseArray(self, nums: List[int]) -> List[int]:
ans = []
N = len(nums)
for i in range(N):
for j in range(nums[i]):
if j | j + 1 == nums[i]:
ans.append(j)
break
if j == nums[i] - 1:
ans.append(-1)
return ans
def minBitwiseArray(self, nums: List[int]) -> List[int]:
for i, x in enumerate(nums):
if x == 2:
nums[i] = -1
else:
t = ~x
lb = t & -t
nums[i] ^= lb >> 1
return nums
Q3(3316). Find Maximum Removals From Source String
解法: Link
def maxRemovals(self, source: str, pattern: str, targetIndices: List[int]) -> int:
targetIndices = set(targetIndices)
@cache
def f(i,j):
if i < 0 and j < 0:
return 0
if i < j:
return -inf
res = f(i - 1, j) + (i in targetIndices)
if j >= 0 and source[i] == pattern[j]:
return max(f(i - 1, j - 1), res)
return res
return f(len(source) - 1, len(pattern) - 1)
142
Q1(3330). Find the Original Typed String I
def possibleStringCount(self, word: str) -> int:
ans = 1
for i in range(1, len(word)):
if word[i - 1] == word[i]:
ans += 1
return ans
def possibleStringCount(self, word: str) -> int:
ans = 1
for x, y in pairwise(word):
if x == y:
ans += 1
return ans
Q3(3332). Maximum Points Tourist Can Earn
def maxScore(self, n: int, k: int, stayScore: List[List[int]], travelScore: List[List[int]]) -> int:
if k == 1:
return max(stayScore[0] + [max(t) for t in travelScore])
@cache
def f(d, city):
if d > k - 1:
return 0
res = 0
for i in range(n):
if i == city:
res = max(res, f(d + 1, i) + stayScore[d][i])
else:
res = max(res, f(d + 1, i) + travelScore[city][i])
return res
res = 0
for i in range(n):
res = max(res, f(0, i))
return res
143
Q1(3345). Smallest Divisible Digit Product I
def smallestNumber(self, n: int, t: int) -> int:
def digit(num):
s = 1
while num:
s *= num % 10
num //= 10
return s
i = 0
while True:
if digit(n + i) % t == 0:
return n + i
i += 1
144
Q1(3360). Stone Removal Game
def canAliceWin(self, n: int) -> bool:
cnt = 10
while n >= cnt:
n -= cnt
cnt -= 1
return True if cnt % 2 else False
Q2(3361). Shift Distance Between Two Strings
def shiftDistance(self, s: str, t: str, nextCost: List[int], previousCost: List[int]) -> int:
ans = 0
def pre_cost(i, j):
cnt = 0
pos_i = ord(i) - ord('a')
pos_j = ord(j) - ord('a')
while pos_i != pos_j:
cnt += previousCost[pos_i]
if pos_i == 0:
pos_i = 25
else:
pos_i -= 1
return cnt
def next_cost(i, j):
cnt = 0
pos_i = ord(i) - ord('a')
pos_j = ord(j) - ord('a')
while pos_i != pos_j:
cnt += nextCost[pos_i]
if pos_i == 25:
pos_i = 0
else:
pos_i += 1
return cnt
for i in range(len(s)):
ans += min(pre_cost(s[i], t[i]), next_cost(s[i], t[i]))
return ans
145
Q1(3375). Minimum Operations to Make Array Values Equal to K
def minOperations(self, nums: List[int], k: int) -> int:
if min(nums) < k:
return -1
nums = set(nums)
return len(nums) - 1 if min(nums) == k else len(nums)
146
Q1(3392). Count Subarrays of Length Three With a Condition
def countSubarrays(self, nums: List[int]) -> int:
ans = 0
for i in range(len(nums) - 2):
if nums[i + 1] == 2 * (nums[i] + nums[i + 2]):
ans += 1
return ans
Q2(3393). Count Paths With the Given XOR Value
def countPathsWithXorValue(self, grid: List[List[int]], k: int) -> int:
ROW = len(grid)
COL = len(grid[0])
MOD = 10 ** 9 + 7
@cache
def dfs(i, j, v):
if i >= ROW or j >= COL:
return 0
v ^= grid[i][j]
if i == ROW - 1 and j == COL - 1:
if v == k:
return 1
return 0
return (dfs(i + 1, j, v) + dfs(i, j + 1, v)) % MOD
return dfs(0, 0, 0) % MOD